Forecasting Long Memory Time Series Under a Break in Persistence
نویسندگان
چکیده
منابع مشابه
Time Series Forecasting Based on Augmented Long Short-Term Memory
In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...
متن کاملWavelet-based Forecasting of Short and Long Memory Time Series
A wavelet-based forecasting method for time series is introduced. It is based on a multiple resolution decomposition of the signal, using the redundant “à trous” wavelet transform which has the advantage of being shift-invariant. The result is a decomposition of the signal into a range of frequency scales. The prediction is based on a small number of coefficients on each of these scales. In its...
متن کاملForecasting Under Structural Break Uncertainty
This paper proposes two new weighting schemes that average forecasts using different estimation windows to account for structural change. We let the weights reflect the probability of each time point being the most-recent break point, and we use the reversed ordered Cusum test statistics to capture this intuition. The second weighting method simply imposes heavier weights on those forecasts tha...
متن کاملForecasting Across Time Series Databases using Long Short-Term Memory Networks on Groups of Similar Series
With the advent of Big Data, nowadays in many applications databases containing large quantities of similar time series are available. Forecasting time series in these domains with traditional univariate forecasting procedures leaves great potentials for producing accurate forecasts untapped. Recurrent neural networks, and in particular Long Short Term Memory (LSTM) networks, have proven recent...
متن کاملLong memory time series models
For a long time the most frequently used models in time series analysis were the AR, MA and ARMA processes. Their spectral densities are continuous and therefore bounded functions on [ — n, it]. If the periodogram of real data reached significantly high values, it was considered as an indication of the trend or of a periodic component. The bias arising after trend removal in the spectral densit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2009
ISSN: 1556-5068
DOI: 10.2139/ssrn.1508404